Module AmpliVision.src.objs.grid
Sub-modules
AmpliVision.src.objs.grid.Square
AmpliVision.src.objs.grid.grid
Classes
class Grid (img: numpy.ndarray)
-
Expand source code
class Grid: def __init__(self, img: np.ndarray): # scanned image self.img = img.copy() # setup ratios used in the grid # such as the plus minus, etc. self.setup_ratios() # saving blocks here and in grid creates 2 sources of truth. # This list should keep index or something. self.blocks = [] # represents the grid in the image as a 2D array of squares. Initialized as 2D array of None to represent empty. self.grid = [ [None for _ in range(self.MAX_INDEX + 1)] for _ in range(self.MAX_INDEX + 1) ] self.create_grid() ## Setup functions ## def setup_ratios(self): """ ### Setup rations Function that sets up the ratios used in the grid. """ # max x and y coordinates of the image self.MAX_XY = self.img.shape[0] # assumes image is square # ratios measured experimentally as a percentage of the grid # size of pin diameter/grid size self.PIN_RATIO = int(self.MAX_XY * 0.012) # size of edge/grid size. Edge is the "lines" around squares self.EDGE_RATIO = int(self.MAX_XY * 0.01) # squares are the places where you can insert the ampli blocks self.SQUARE_RATIO = int(self.MAX_XY * 0.089) # an arbitrary general tolerance self.PLUS_MINUS = int(self.MAX_XY * 0.005) self.SQUARE_LENGTH = self.SQUARE_RATIO + self.EDGE_RATIO self.MAX_INDEX = 9 # assumes grid is square 10x10 def create_grid(self): """ ### Create grid Function that creates the grid of squares in the image. """ # These are the stop values for the for loops. STOP_XY = self.MAX_XY - self.EDGE_RATIO STEP = self.SQUARE_LENGTH # iterate through the grid by moving in steps of SQUARE_LENGTH # until the max x and y values are reached. # x and y are the top left points of the squares # x_index and y_index are the index of the square in the grid for y, x in itertools.product(range(0, STOP_XY, STEP), range(0, STOP_XY, STEP)): # get the corresponding index of the square in the grid # flipped coordinates to make it (row, column) y_index, x_index = Utils.xy_to_index(self, x, y) # coordinates of the top left and bottom right points of the square top_left = ( x + (self.EDGE_RATIO), y + (self.EDGE_RATIO) ) bottom_right = ( x + self.SQUARE_RATIO + (self.EDGE_RATIO), y + self.SQUARE_RATIO + (self.EDGE_RATIO) ) # create a square object sq sq = Square( top_left, bottom_right, (x_index, y_index), self.PIN_RATIO, self.PLUS_MINUS, self.img ) # add the square to the grid list self.grid[x_index][y_index] = sq ### Find functions ### def find_pins(self, contours: list[np.ndarray]): """ ### Find potential pins --------------- Function that finds the pins and adds them to their bounding squares. The pins are found by finding the square structures in the image. #### Args: * contours: list of contours around non-grayscale (colorful) edges in image """ # Square structures are 4 points (in this case pins), # arranged in the shape of a square square_structures, pin_list = self.get_square_structures(contours) # adds the 4 potential pins structured as a square shape to the # square in the grid where the middle of the structure is located for square_structure, pins in zip(square_structures, pin_list): # get the middle of the structure center = find_center_of_points(square_structure) # get the index of sq based on the center of the structure # flipped coordinates to make it (row, column) y_index, x_index = Utils.xy_to_index(self, center[0], center[1]) # add pins to the appropriate square in the grid for pin in pins: self.grid[x_index][y_index].add_pin(pin) def find_blocks(self, contours: list[np.ndarray]): """ ### Find blocks --------------- Function that determines which squares are blocks in the grid. It does this by finding the potential pins (p_pins) then checking if the pin is in the corners of the square and adding it to the square if it is. #### Args: * contours: list of contours around non-grayscale (colorful) edges in image #### Returns: None """ # finds the potential pins (p_pins) # and adds them to their bounding squares. self.find_pins(contours) # checks if the potential pins are in one of the corners of square. # adds potential pin as a pin to the square if it is. self.process_pins() # checks if the square has x or more pins # if it does, it is considered a block. self.add_blocks() ## Helper functions ## def process_pins(self): """ checks if the potential pins are in one of the corners of square. Adds potential pin as a pin to the square if it is. """ for sq in itertools.chain(*self.grid): if len(sq.get_p_pins()) < 4: continue for p_pin in sq.get_p_pins(): x, y, w, h = cv.boundingRect(p_pin) # checks if top left or bottom right point of pin # is inside corner of square within error range if sq.is_in_corners_skewed(x, y, w, h): sq.add_pin(p_pin) ### Get functions ### def get_blocks(self): return self.blocks def get_contour_centers(self, contours: list[np.ndarray]): """ Function that finds the center point of each contour #### Args: * contours: list of contours around non-grayscale (colorful) edges in image #### Returns: * center_to_contour_index: dictionary with center points as keys and their corresponding contour indices as values """ center_to_contour_index = {} for i, contour in enumerate(contours): center = find_center_of_contour(contour) if center is not None: center_to_contour_index[center] = i # save the indexes bounding the centers of the # contours in a list and remove None values centers = list(center_to_contour_index.keys()) centers = [x for x in centers if x != None] return center_to_contour_index, centers def get_square_structures(self, contours: list[np.ndarray]): """ ### Square structures --------------- Function that finds the square structures in the image. A square structure is defined as 4 points (in this case potential pins) arranged in the shape of a square. #### Args: * contours: list of contours around non-grayscale (colorful) edges in image #### Returns: * square_structures: list of square structures * p_pins: list of p_pins """ square_structures = [] pins = [] # find the center of each contour center_to_contour_index, centers = self.get_contour_centers(contours) # Find all combinations of four points combinations = list(itertools.combinations(centers, 4)) # useful values for debuggin """ point0_step = math.comb(len(centers)-1, 3) point1_step = math.comb(len(centers)-2, 2) point2_step = math.comb(len(centers)-3, 1)""" # print("centers:", len(centers), "combinations:", len(combinations)) # print("point0_step:", point0_step, "point1_step:", point1_step, "point2_step:", point2_step) index = 0 debug_flag = 0 #step_filter = point0_step # iterate through the combinations of points for comb in combinations: # (previously) missing block @ 6,4 in image 6066 '''if index == 1171074: #(1179520 - point1_step - (point2_step*45) - 1): print("special: ", index) debug_flag = True else: debug_flag = False ''' if is_arranged_as_square(comb, self.img, self.SQUARE_LENGTH, recursion_flag=0, debug=debug_flag): # Add the square to the list of # combinations if it is arranged as a square square_structures.append(list(comb)) # Find the indices of the contours that form the square contour_indices = [center_to_contour_index[point] for point in comb] pins.append([contours[i] for i in contour_indices]) index += 1 return square_structures, pins ## Add functions ## def add_blocks(self): for sq in itertools.chain(*self.grid): if len(sq.get_pins()) >= 4: sq.is_block = True self.blocks.append(sq) def add_artificial_block(self, index: tuple[int, int], img, sq_img: np.ndarray): """ ### Add artificial block --------------- Function that adds an artificial block to the grid. #### Args: * index: index of the square in the grid * sq_img: image of the square """ # get the square in the grid i, j = index sq = self.grid[i][j] # No need to worry about all the square parameters, # After the colage, we can pass it through phase 1 again # sq.is_block = True, sq.block_type = ... return self.paste_block(img, sq_img, sq.tl, sq.br) ### Draw functions ### def paste_test_area(self, block): """ replaces the pixels at the block's location with the block's test area image """ # get the top left and bottom right points of the block tl, br = block.tl, block.br # get the images img = self.img test_area_img = block.test_area_img # pixel coordinates corners = block.calculate_corners_pinbased() y_min = corners[0][1][1] y_max = corners[2][0][1] x_min = corners[0][1][0] x_max = corners[2][0][0] # paste the image of the block's test area on the grid img[y_min:y_max, x_min:x_max] = test_area_img self.img = img def paste_block(self, img, sq_img, tl, br): " pastes the image of the block with transparent bkg on the grid " # paste the image of the square on the grid # at the top left and bottom right points of the square # tl and br are the top left and bottom right points of the square center_pt = self.calculate_center(tl, br) # sq_img = cv.resize(sq_img, sq_size) img = self.add_transparent_image(img, sq_img, center_pt) return img def add_transparent_image(self, background, foreground, center_pt): "Source: https://stackoverflow.com/questions/40895785/using-opencv-to-overlay-transparent-image-onto-another-image" bg_h, bg_w, bg_channels = background.shape fg_h, fg_w, fg_channels = foreground.shape assert bg_channels == 3, f"background image should have exactly 3 channels (RGB). found:{bg_channels}" assert fg_channels == 4, f"foreground image should have exactly 4 channels (RGBA). found:{fg_channels}" # center the foreground image on the background image according to the center point x_offset = center_pt[0] - fg_w // 2 y_offset = center_pt[1] - fg_h // 2 w = min(fg_w, bg_w, fg_w + x_offset, bg_w - x_offset) h = min(fg_h, bg_h, fg_h + y_offset, bg_h - y_offset) if w < 1 or h < 1: return # clip foreground and background images to the overlapping regions bg_x = max(0, x_offset) bg_y = max(0, y_offset) fg_x = max(0, x_offset * -1) fg_y = max(0, y_offset * -1) foreground = foreground[fg_y:fg_y + h, fg_x:fg_x + w] background_subsection = background[bg_y:bg_y + h, bg_x:bg_x + w] # separate alpha and color channels from the foreground image foreground_colors = foreground[:, :, :3] alpha_channel = foreground[:, :, 3] / 255 # 0-255 => 0.0-1.0 # construct an alpha_mask that matches the image shape alpha_mask = np.dstack((alpha_channel, alpha_channel, alpha_channel)) # combine the background with the overlay image weighted by alpha composite = background_subsection * \ (1 - alpha_mask) + foreground_colors * alpha_mask # overwrite the section of the background image that has been updated background[bg_y:bg_y + h, bg_x:bg_x + w] = composite return background def draw_gridLines(self, img: np.ndarray): """ ### draws grid lines --------------- Function that draws the grid lines on the image. """ # draw grid lines start = 0 + self.EDGE_RATIO stop = self.MAX_XY - self.EDGE_RATIO + self.PLUS_MINUS step = self.SQUARE_RATIO + self.EDGE_RATIO for i, j in itertools.product(range(start, stop, step), repeat=2): # vertical lines cv.line(img, (i, 0), (i, self.MAX_XY), (0, 255, 0), 2) cv.line(img, (i + self.SQUARE_RATIO, 0), (i + self.SQUARE_RATIO, self.MAX_XY), (0, 255, 0), 2) # horizontal lines cv.line(img, (0, i), (self.MAX_XY, i), (0, 255, 0), 2) cv.line(img, (0, i + self.SQUARE_RATIO), (self.MAX_XY, i + self.SQUARE_RATIO), (0, 255, 0), 2) def draw_blocks(self, image_copy: np.ndarray, show_pins=False, show_corners=False): """ Function that shows image with pins and corners drawn #### Args: * image_copy: copy of the original image * show_pins: boolean to show pins * show_corners: boolean to show corners """ for blk in self.blocks: blk.draw_pins(image_copy) if show_pins else None blk.draw_corners(image_copy) if show_corners else None cv.rectangle(image_copy, blk.tl, blk.br, (0, 0, 255), 3) def calculate_center(self, lft_top, rgt_bot): """ ### Calculate center --------------- Function that calculates the center of a square. #### Args: * lft_top: top left point of the square * rgt_bot: bottom right point of the square #### Returns: * center: center point of the square """ x = (lft_top[0] + rgt_bot[0]) // 2 y = (lft_top[1] + rgt_bot[1]) // 2 return (x, y) def get_square(self, index): """ ### Get square --------------- Function that gets the square at the given index. #### Args: * index: index of the square in the grid #### Returns: * square: square at the given index """ return self.grid[index[0]][index[1]] def set_square(self, index, square): """ ### Set square --------------- Function that sets the square at the given index. #### Args: * index: index of the square in the grid * square: square to set """ self.grid[index[0]][index[1]] = square
Methods
def add_artificial_block(self, index: tuple[int, int], img, sq_img: numpy.ndarray)
-
Add artificial block
Function that adds an artificial block to the grid.
Args:
- index: index of the square in the grid
- sq_img: image of the square
def add_blocks(self)
def add_transparent_image(self, background, foreground, center_pt)
def calculate_center(self, lft_top, rgt_bot)
-
Calculate center
Function that calculates the center of a square.
Args:
- lft_top: top left point of the square
- rgt_bot: bottom right point of the square
Returns:
- center: center point of the square
def create_grid(self)
-
Create grid
Function that creates the grid of squares in the image.
def draw_blocks(self, image_copy: numpy.ndarray, show_pins=False, show_corners=False)
-
Function that shows image with pins and corners drawn
Args:
- image_copy: copy of the original image
- show_pins: boolean to show pins
- show_corners: boolean to show corners
def draw_gridLines(self, img: numpy.ndarray)
-
draws grid lines
Function that draws the grid lines on the image.
def find_blocks(self, contours: list[numpy.ndarray])
-
Find blocks
Function that determines which squares are blocks in the grid. It does this by finding the potential pins (p_pins) then checking if the pin is in the corners of the square and adding it to the square if it is.
Args:
- contours: list of contours around non-grayscale (colorful) edges in image
Returns:
None
def find_pins(self, contours: list[numpy.ndarray])
-
Find potential pins
Function that finds the pins and adds them to their bounding squares. The pins are found by finding the square structures in the image.
Args:
- contours: list of contours around non-grayscale (colorful) edges in image
def get_blocks(self)
def get_contour_centers(self, contours: list[numpy.ndarray])
-
Function that finds the center point of each contour
Args:
- contours: list of contours around non-grayscale (colorful) edges in image
Returns:
- center_to_contour_index: dictionary with center points as keys and their corresponding contour indices as values
def get_square(self, index)
-
Get square
Function that gets the square at the given index.
Args:
- index: index of the square in the grid
Returns:
- square: square at the given index
def get_square_structures(self, contours: list[numpy.ndarray])
-
Square structures
Function that finds the square structures in the image.
A square structure is defined as 4 points (in this case potential pins) arranged in the shape of a square.Args:
- contours: list of contours around non-grayscale (colorful) edges in image
Returns:
- square_structures: list of square structures
- p_pins: list of p_pins
def paste_block(self, img, sq_img, tl, br)
-
pastes the image of the block with transparent bkg on the grid
def paste_test_area(self, block)
-
replaces the pixels at the block's location with the block's test area image
def process_pins(self)
-
checks if the potential pins are in one of the corners of square. Adds potential pin as a pin to the square if it is.
def set_square(self, index, square)
-
Set square
Function that sets the square at the given index.
Args:
- index: index of the square in the grid
- square: square to set
def setup_ratios(self)
-
Setup rations
Function that sets up the ratios used in the grid.