Module AmpliVision.src.generators

Sub-modules

AmpliVision.src.generators.image_generation
AmpliVision.src.generators.rgb_data_generator

Classes

class DataExtractor (sample_type: str, extract_from: str)

A class to extract RGB data from CSV files and convert it to fingerprint data.

Attributes

sample_type : str
The type of sample (e.g., DENV, ZIKV, CHIKV).
extract_from : str
The path to the CSV files.
colors : list
The colors used in the RGB space.
Expand source code
class DataExtractor:
    """
    A class to extract RGB data from CSV files and convert it to fingerprint
    data.

    Attributes:
        sample_type (str): The type of sample (e.g., DENV, ZIKV, CHIKV).
        extract_from (str): The path to the CSV files.
        colors (list): The colors used in the RGB space.
    """

    def __init__(self, sample_type: str, extract_from: str):
        self._sample_type = sample_type  # e.g. DENV, ZIKV, CHIKV
        self._extract_from = extract_from  # path to the csv files
        self._colors = ['r', 'g', 'b']  # color space

    def load_csv_files(
        self,
        path: str = None,
        display: bool = False
    ) -> list[str]:
        """ Load the csv files from the specified path."""

        # if path is not specified, use the default path
        if path is None:
            path = self._extract_from
        csv_files = glob(path + f"{self._sample_type}*.csv")

        if display:
            print(f"Extracting fingerprints from {len(csv_files)} csv files")

        return csv_files

    def convert_spots_to_fingerprints(
        self,
        rgbs_by_type: list[dict[list[list[float]]]]
    ) -> dict[list[list[float]]]:
        """Converts the RGB spots to fingerprints."""

        # puts it into a nicer format to work with
        appended_spots = self.append_spots(rgbs_by_type)

        fingerprint_by_block_type = {}
        for block_type in appended_spots:

            # separate the corr RGB values for each block type
            spot1, spot2 = self.separate_spots(appended_spots[block_type])

            
            # calculate the mean and standard deviation of the corr RGB values
            block_type_fingerprint = self.get_mean_and_std_of_spots(
                spot1, spot2)

        
            # make sure the std is at least 10
            block_type_fingerprint = Utils.ensure_std_floor(
                block_type_fingerprint, 5)

            # add fingerprint to dictionary
            fingerprint_by_block_type[block_type] = block_type_fingerprint

        return fingerprint_by_block_type

    def separate_spots(
        self,
        blocks: list[list[float]]
    ) -> tuple[list[list[float]]]:
        """Separate the corr RGB values of spot1 and spot2 from the blocks."""
        spot1_corr_rgbs = []
        spot2_corr_rgbs = []
        for block in blocks:
            spot1_corr_rgbs.append(block[:3])
            spot2_corr_rgbs.append(block[3:])
        return spot1_corr_rgbs, spot2_corr_rgbs

    def extract(
        self,
        path: str = None,
        display: bool = False
    ) -> dict[str, list[list[float]]]:
        """ extract the RGB fingerprint from the csv file"""

        if path is None:
            path = self._extract_from

        # load the csv files
        csv_files = self.load_csv_files(path)

        # extract the RGB spots from each csv file
        spots = self.extract_spots_from_multiple_csv(csv_files)

        # turn spot into fingerprint
        fingerprints = self.convert_spots_to_fingerprints(spots)

        if display:
            Utils.display_fingerprint(fingerprints)

        return fingerprints

    def append_spots(
        self,
        rgbs_by_type: list[dict[list[list[float]]]]
    ) -> dict[list[list[float]]]:
        """ Append the RGB spots to a map, separated by block type."""
        # initializing map with empty lists
        appended_spots = {
            type_: [] for image in rgbs_by_type for type_ in image
        }

        # appending spots
        for image in rgbs_by_type:
            for type_ in image:
                for block in image[type_]:
                    r1, g1, b1 = block[0]
                    r2, g2, b2 = block[1]
                    appended_spots[type_].append([r1, g1, b1, r2, g2, b2])
        return appended_spots

    def extract_spots_from_multiple_csv(
        self,
        csv_files: list[str]
    ) -> list[dict[list[list[float]]]]:
        """ extract the RGB spots from multiple csv files"""
        spots = []
        for csv_file in csv_files:
            rgbs_by_type = self.extract_spots_from_single_csv(csv_file)
            spots.append(rgbs_by_type)
        return spots

    def extract_spots_from_single_csv(
        self,
        path: str
    ) -> dict[list[list[float]]] | dict[None]:
        """
        This function reads a csv file containing RGB values and returns a 
        normal distribution of the RGB values.

        csv file format:
        1. The first row contains the column names 
        [   date,time,grid_index ,block_type,
            spot1_r ,spot1_g ,spot1_b ,
            spot2_r ,spot2_g ,spot2_b ,
            bkg_r ,bkg_g ,bkg_b ,
            spot1_corr_r ,spot1_corr_g ,spot1_corr_b ,
            spot2_corr_r ,spot2_corr_g ,spot2_corr_b
        ]
        ...

        Args:
            path (str): The path to the csv file

        Returns:
            map: A dictionary containing the RGB values of each spot for each block type
            ex: {'block_type1': [ [r1, g1, b1, r2, g2, b2], ..., ] ...more block_types}

        """

        # read the csv file
        try:
            with open(path, 'r', encoding='UTF-8') as file:
                data = file.readlines()
        except FileNotFoundError:
            print(f"File not found: {path}")
            return {}

        # extract the corr RGB values
        rgbs_by_type = self.extract_corr_rgbs(data)

        return rgbs_by_type

    def get_mean_and_std_of_spots(
        self,
        spot1_corr_rgbs: list[list[float]],
        spot2_corr_rgbs: list[list[float]]
    ) -> dict[str, list[float]]:
        """ 
        calculate the mean and standard deviation of the corr RGB values

        Args:
            spot1_corr_rgbs (list): The corr RGB values of spot1
            spot2_corr_rgbs (list): The corr RGB values of spot2

        Format:
            - spot1_corr_rgbs = [[r1, g1, b1], [r2, g2, b2], ...]
            - spot2_corr_rgbs = [[r1, g1, b1], [r2, g2, b2], ...]

        Returns:
            map: A dictionary containing the mean and standard deviation of 
            the RGB values for each spot
        Format: 
            {color: [mean1, std1, mean2, std2]}
        """
        fingerprint = {}
        for i in range(3):
            spot1_rgbs = [rgb[i] for rgb in spot1_corr_rgbs]
            spot2_rgbs = [rgb[i] for rgb in spot2_corr_rgbs]
            fingerprint[self._colors[i]] = [
                mean(spot1_rgbs),
                pstdev(spot1_rgbs),
                mean(spot2_rgbs),
                pstdev(spot2_rgbs)
            ]

        return fingerprint

    def extract_corr_rgbs(
        self,
        data: list[str]
    ) -> dict[str, list[list[float]]]:
        """Extract the corr RGB values from the csv file of each block type."""
        rgbs_by_type = {}
        for line in data[1:]:
            rgbs_by_type = self._extract_corr_rgb_by_type(line, rgbs_by_type)

        return rgbs_by_type

    def _extract_corr_rgb_by_type(
        self,
        line: str,
        rgbs_by_type: dict[str, list[list[float]]]
    ) -> dict[str, list[list[float]]]:
        """Extract the corr RGB values for a specific block type from a single line of CSV data."""
        # Gets one row from csv
        row = next(csv.reader(StringIO(line), delimiter=',', quotechar='"'))

        # skips spaces between data rows
        if len(row) < 19:
            return rgbs_by_type

        # gets block type from row
        block_type = row[3].strip()
        if block_type not in rgbs_by_type:
            # then initializes an empty list for block type if not already there
            rgbs_by_type[block_type] = []

        # appends a list with data -> [corr_r1, corr_g1, corr_b1, corr_r2, corr_g2, corr_b2]
        rgbs_by_type[block_type].append(
            [
                Utils.format_line(row, 0, get_corr=False), 
                Utils.format_line(row, 1, get_corr=False)
            ]
        )

        return rgbs_by_type

Methods

def append_spots(self, rgbs_by_type: list[dict[list[list[float]]]]) ‑> dict[list[list[float]]]

Append the RGB spots to a map, separated by block type.

def convert_spots_to_fingerprints(self, rgbs_by_type: list[dict[list[list[float]]]]) ‑> dict[list[list[float]]]

Converts the RGB spots to fingerprints.

def extract(self, path: str = None, display: bool = False) ‑> dict[str, list[list[float]]]

extract the RGB fingerprint from the csv file

def extract_corr_rgbs(self, data: list[str]) ‑> dict[str, list[list[float]]]

Extract the corr RGB values from the csv file of each block type.

def extract_spots_from_multiple_csv(self, csv_files: list[str]) ‑> list[dict[list[list[float]]]]

extract the RGB spots from multiple csv files

def extract_spots_from_single_csv(self, path: str) ‑> dict[list[list[float]]] | dict[None]

This function reads a csv file containing RGB values and returns a normal distribution of the RGB values.

csv file format: 1. The first row contains the column names [ date,time,grid_index ,block_type, spot1_r ,spot1_g ,spot1_b , spot2_r ,spot2_g ,spot2_b , bkg_r ,bkg_g ,bkg_b , spot1_corr_r ,spot1_corr_g ,spot1_corr_b , spot2_corr_r ,spot2_corr_g ,spot2_corr_b ] …

Args

path : str
The path to the csv file

Returns

map
A dictionary containing the RGB values of each spot for each block type
ex
{'block_type1': [ [r1, g1, b1, r2, g2, b2], …, ] …more block_types}
def get_mean_and_std_of_spots(self, spot1_corr_rgbs: list[list[float]], spot2_corr_rgbs: list[list[float]]) ‑> dict[str, list[float]]

calculate the mean and standard deviation of the corr RGB values

Args

spot1_corr_rgbs : list
The corr RGB values of spot1
spot2_corr_rgbs : list
The corr RGB values of spot2

Format

  • spot1_corr_rgbs = [[r1, g1, b1], [r2, g2, b2], …]
  • spot2_corr_rgbs = [[r1, g1, b1], [r2, g2, b2], …]

Returns

map
A dictionary containing the mean and standard deviation of

the RGB values for each spot Format:

def load_csv_files(self, path: str = None, display: bool = False) ‑> list[str]

Load the csv files from the specified path.

def separate_spots(self, blocks: list[list[float]]) ‑> tuple[list[list[float]]]

Separate the corr RGB values of spot1 and spot2 from the blocks.